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Abstract

As malicious code has become more sophisticated and
pervasive, faster and more effective system for forensics
and prevention is important. Particularly, quick analysis
of polymorphic (partly encrypted) viral code is necessary.
In this paper we propose a parallel analysis of polymorphic
viral code using automated deduction system. In proposed
system, decipher routine and its parameters are detected
by parallelized automated theorem proving. We apply the
weighting and look-ahead heuristics for parallel analysis.
We run several detection programs with different comput-
ing strategies for analyzing target viral binary code. When
the fastest detection process is finished with computing time
T(0), remaining detection processes with T(1..n) can be ter-
minated in T(0). In experiment, computing time for detec-
tion is reduced with average rate about 46%. In about a half
of all cases, T (0) ∗ 3 ≤ T(max) where T(max) is comput-
ing time without our strategy. That is, our parallel system
makes detection program faster without appending hard-
ware computing resources. Our system is lightweight and
effective for reverse engineering and computer forensics.

1 Introduction

Malicious mobile code has become more sophisticated.
Software encryption and obfuscation is applied for evad-
ing signature matching and detection. This kind of code is
called polymorphic viral code, of which signature is meta-
morphically generated. Unfortunately or not, operating sys-
tem and application has become a large size. As a result,
it takes long time to detect polymorphic virus. For foren-
sics and prevention, we need faster and more lightweight
detection system. Table 1 and 2 is the example of poly-
morphic malicious code. Two tables illustrate obfuscating
API ”GetModuleHandleA” by Win32.Metaphor[*]. These
are functionally equivalent, but assembly code of table 2 is
complicated so that we cannot detect it. For example,

mov dword_4, 32336C65h

is obfuscated to 4 instructions.

mov edi,32336C65h
lea eax,edi
mov edi,eax
mov dword_4,edi

This technique is called register substitution. This is ap-
plied for another computer viruses such as Win32.Evol and
Win32.Zmist.

To cope with this kind of complicated code, we need to
achieve two goals. First, instructions and parameters need
to be extracted to reveal the target routine (GetModuleHan-
dleA). Second, extraction of structure and parameters need
to be done in reasonable computer time. For these goals,
we propose a parallel analysis of polymorphic viral code
using automated deduction system. In proposed system,
we decuce instructions and parameters from polymorphi-
cally obfuscated code by automated theorem proving. For
faster prevention, we parallelize our theorem proving sys-
tem. Overview of proposed system is presented in section
3. Detecting instructions is illustrated in section 4. Detect-
ing parameters is illustrated in section 5. Then, we discuss
how to parallelize proposed deduction system in section 6
and 7. We discuss the effectiveness of our parallel analysis
by numerical output of theorem prover in section 7.

2 Related work

Theoretical aspect of detecting computer virus is dis-
cussed in[1][2]. In 2001, Symantec published the paper
about W32.Metaphor[3]. The application of software verifi-
cation for detecting malware is divided into two fields: em-
ulation based approach[5] and semantic based approach[6].
In [7], model checking is applied for checking program vul-
nerability. Attack graphs and algebraic specification is used
for analyzing malicious code in [9]. Detailed techniques
about reordering instructions is discussed in [10].



1 mov dword 3, 6E72654Bh
2 mov dword 4, 32336C65h
3 mov dword 5, 0h
4 push offset dword 3
5 call ds:GetModuleHandleA

Table 1. Assembly code of GetModuleHan-
dleA API.

3 mov dword 1,0h
3 mov cdx,dword 1
3 mov dword 2,edx
3 mov edp,dword 2
2 mov edi,32336C65h
2 lea eax,[edi]
1 mov esi,0A624540h
1 or esi,4670214Bh
2 lea edi,[eax]
2 mov dword 4,cid
3 mov edx,ebp
3 mov dword 5,edx
1 mov dwrod 3,esi
4 mov edx,offset dword 3
4 push edx
5 mov dword 6,offset GetModuleHandleA
5 push dword 6
5 pop dwprd 7
5 mov edx,dword 7
5 call dword ptr ds:0[edx]

Table 2. Obfuscated assembly code of Get-
ModuleHandleA API

3 System overview

Figure 1 show the overview of proposed system. Pro-
posed system extracts four routines (parameter setting, pay-
load transfer, loop/branch and decipher) from binary code.
At first stage, we find opcode (instruction) and operand (ar-
gument). Second, proposal system classifies transfer in-
struction and other instructions. On the other hand, we
translate operand into registers. At third stage, informa-
tion of transfer instruction, other instruction and registers
is gathered to find four routines.

To implement our model, we use open source software
OTTER (Organized Techniques for Theorem-proving and
Effective Research). OTTER[17] is a forth-generation of
Argonne National Laboratory deduction system to prove
theorems stated in FoL with Knuth-Bendix completion,
with some strategies for directing and restricting searches.

4 De-obfuscation: detecting decipher in-
structions

In this section we discuss a way to detect decipher rou-
tine using theorem prover OTTER. Theorem prover simpli-
fies obfuscated code by resolution. If theorem prover suc-
ceed to deduce clauses of decipher instructions (right side
on Figure 1), unit conflict is occurred to terminate reason-
ing process. Code translation and weighting for faster reso-
lution are also discussed.

4.1 Clause resolution

First, clauses on left side are simplified to two clause on
right side as follows:

fact: (mov dword_1 0h)
fact: (mov edx dword_1)
conclusion: mov edx 0h.

Deduction is done by the resolution of theorem prover. Sec-
ond, theorem prover occurs unit conflict to terminate the
reasoning process. Unit conflict is generated when program
get unit clauses with opposite in sign.

Definition: Unit conflict
The unit conflict is a event where two clauses contains a sin-
gle literal of which signs are opposite and can be unified.
These two clauses is called contradictory unit clauses.

In other words, if we succeed to extract decipher routine,
unit conflict is occurred. To complete this process, we need
three kinds of clauses.

set of support:
/* clause set of viral code. */
fact: (mov ebp, dword_2)
fact: (mov edx, ebp)
passive list:
/* clauses we try to find. */
conclusion: -(mov edx dword_2)
usable list:
/* clauses for resolution.*/
-mov(A,B) | -mov(C,A) | mov(C,B).

When theorem prover generates the same clauses from
”set of support” with opposite sign as ”passive list”, unit
conflict is occurred.

4.2 Code translation

We translate the assembly code into clause expression
understandable for theorem prover.
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Figure 1. Overview of proposed system.

4337:010D 8A 03 mov al,[bp+di]
4337:010F 80 F4 2F xor ah,2Fh
4337:0112 02 07 add al,[bx]

The sample above is the output of disassembler. Left side
is hex code of executable. Right side is disassembled code.
We translate these as follows.

mov(reg(al),offset([bp+di]),
86,time(1)).
xor(reg(ah),const(2Fh),87,time(1)).
add(reg(al),offset([bx]),88,time(1)).

These clauses are placed on set of support. Theorem
prover processes these clauses using transition axioms.

4.3 Weighting strategy

In our method, prover searches combination of clauses
so that transition axioms could be applied. The number of
possible combination becomes very large number. Then,
some strategies are necessary in order to make reasoning
process feasible, at least terminated in reasonable comput-
ing time. Weighting is technique to make our program focus
on important clauses and block redundant paths of reason-
ing. For example, we set these clauses to make program
focus on important instructions like these:

weight_list.
weight(xor($(*),$(*),$(*),$(*)),-X).
weight(jmp($(*),$(*),$(*),$(*)),-X).
weight(rotate($(*),$(*),$(*),$(*)),X).
end_of_list.

By setting these clauses, xor and jmp is paid more attention
compared with rotate.

5 Detecting parameters of decipher routine

There are four parameters of decipher routine: address
of encrypted data, key, address of loop entry point, and
counter. The basic structure of obfuscated decipher routine
is as follows:

set A address_of_payload
set B key
set C address_loop_start
set D counter

address_loop_start
payload_transfer(A)
decryptor(B)
parload_transfer(A)
branch(D)
goto_start(C)
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When we detect four parameters A-D, the detection is
completed.

5.1 Paramodulation and demodulation

Paramodulation[15] is one of the techniques of equa-
tional reasoning. The purpose of this inference rule is for an
equality substitution to occur from one clause to another. In
the discussion of completeness and efficiency, paramodula-
tion is often compared with demodulation[14]. Demodula-
tion is mainly designed for canonicalizing information and
sometimes more effective than paramodulation. However,
demodulation does not have power to cope with clauses as
follows:

fact: f(g(x),x).
fact: equal(g(a),b).
conclusion f(b,a).

That is, paramodulation is a generalization of the substitu-
tion rule for equality. For searching parameters of obfus-
cated decipher routine, we should use both paramodulation
and demodulation.

fact: equal(data_16e,514Bh).
fact: mov(reg(ah),const(data_16e),
63,time(1)).
conclusion : mov(reg(ah),const(514Bh),
63,time(1)).

The clauses above is the application of demodulation to deal
with constant number defined in the beginning of program.
In obfuscating decipher routine, there’s another way to hide
parameter using mov (data transfer) instruction.

fact: mov(reg(ah),const(2Ch),
162,time(1)).
fact: mov(reg(bx),reg(ah),300,time(1)).
/* decrypter */
fact: xor(reg(dx),reg(bx),431,time(1)).

In this case, we insert this clause to occur paramodulation.

-mov(reg(x),const(y),z,time(1)) |
x=const(y,z).
conclusion:
decrypter(reg(dx),key(const(2Ch,162),
431,time(1)).

Conclusion is generated by paramodulation. By using
paramodulation, we detect the value of [1]key, [2]address
of payload, [3]loop counter (how many times the routine
repeats), and [4]entry point of decipher routine.

5.2 Applying hot list strategy

In this paper we apply a heuristics to make paramodu-
lation faster. Hot list strategy, proposed by Larry Wos[15],
is one of the look ahead strategies. Look-ahead strategy is
designed to enable reasoning program to draw conclusions
quickly using a list whose elements are processed with each
newly retained clause. Mainly, hot list strategy is used for
controlling paramodulation. By using this strategy, we can
emphasize particular clauses on hot list on paramodulation.

6 Parallelized reasoning process

In previous section, we discussed two reasoning heuris-
tics, weighting and hot list strategy. Several weighting and
hot lists is applied for our program. However, before de-
tection is completed, which strategy is best to reduce the
computing time. Computing time is quite different accord-
ing to which strategy we apply. Then, parallel analysis is
neccesary. Figure 3 illustrates proposed parallel analysis.
In this figure, reasoning program with strategy 2 is fastest
to be finished. Other processes are terminated when pro-
gram 2 is finished. Let N(1), N(2) and N(3) be computing
time of program 1, 2 and 3. Proposed parallel analysis is
effective particularly when

N(2) * 3 < N(1) + N(2) + N(3)

As we discussed later, numerical output of our system
achieves this comdition with probability rate of 50 %.

7 Numerical results

In this section we validate the effectiveness of our system
by numerical output of theorem prover. First, we briefly
discuss the result of weighting startegy.

7.1 SMEG

In experiment, we use SMEG (Simulated Metamorphic
Encryption Generator)[15] to generate sample programs of
obfuscated decipher routine. SMEG can generate hundreds
of executables including obfuscated decipher routine. There
are three types of SMEG mutations as shown in Table 3.
Type A and C uses mov and xchg (exchange) to transfer
the encrypted data. Type B uses indirect addressing (xor
[address] key) to execute payload transfer and decryption at
the same time. In type D, stack operation is applied for data
transfer (fetch) and loop II (push / retf).

7.2 Weight lists

In this section we present the numerical output of theo-
rem prover according to several weighting strategies. Table
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Figure 2. Proposed parallel analysis.

Type A Type B Type C Type D
loop I set loop start loop start set loop start set loop start
transfer I mov data address decrypt [address] key xchg address data push data / pop data
decrypt I decrypt data key decrypt [address] key decrypt data key decrypt data key
transfer II mov address data decrypt [address] key xchg address data mov address data
decrypt II inc address inc address inc address inc address
branch II dec counter dec counter dec counter dec counter
branch test counter counter test counter counter test counter counter test counter counter
loop II jmp loop start jmp loop start jmp loop start push / retf

Table 3. Three kinds of assembly code generated by SMEG

4 and 5 show the number of generated clauses for detect-
ing four types of SMEG mutation. + means that theorem
prover focus on that instruction. - means not. It is shown
that without proper weightings, computation time becomes
too much longer according to Table 4 and 5. Among three
types, weighting (-,+,+) results in good performance. Both
tables indicates other instructions should not be focused.
However, in Table 5, branch instructions should not be paid
much attention. In both tables, Weighting (-,+,+) results in
good performance.

7.3 Hot list strategy

To detect parameters, clauses are generated by reasoning
program for paramodulation as follows.

-mov(reg(x),const(y),z,w) |
x=const(y,z).

Clauses on right side are called paramodulant. Pamod-
ulant is used by theorem prover for equality substitution
(paramodulation). We make two hot lists. In other words,
we set hot list clauses about registers EAX, EBX, ECX
EDX and ESI, EDI, EBP, ESP.

# hot list group I :
calculation registers
list(hot).
ax=const(x,y). bx=const(x,y).
cx=const(x,y). dx=const(x,y).
end_of_list.

# hot list group II :
memory registers
list(hot).
di=const(x,y). si=const(x,y).
bi=const(x,y). bp=const(x,y).
end_of_list.
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generated code type A (mov for payload transfer) generated code type C (xchg for payload transfer)
MOV DECRYPT OTHER generated clauses MOV DECRYPT OTHER generated clauses
+ + - 1091841 + + - 1172590
+ - - 1091912 + + - 1172590
- + - 1624209 - + - 1373584
- - + 707 - - + 666
- + + 778 - + + 604
+ - + 707 + - + 666
generated code type B (using indirect addressing) generated code type D (stack for paylaod transfer)

MOV DECRYPT OTHER generated clauses MOV DECRYPT OTHER generated clauses
+ + - 640888 + + - 1172779
+ - - 402426 + - - 1172842
- + - 745398 - + - 2426631
- - + 778 - - + 806
- + + 769 - + + 779
+ - + 778 + - + 806

Table 4. Weighting strategies. + means that detection program focus on the instruction. - means not.
Weighting (-,+,+) works well.

Type A (no weighting) Type A (with weighting)
HOT LIST all clauses HOT LIST all clauses
no heat 915 no heat 707
EAX 677 EAX 677
EBX 670 EBX 602
ECX 799 ECX 541
EDX 756 EDX 540
EDI 1078 EDI 822
ESI 1055 ESI 801
EBI 1055 EBI 801
EBP 1055 EBP 801
Group I 468 Group I 366
Group II 1510 Group II 1206

Table 6. Hot list strategies for Type A.
Paramodulation for detecting parameters
into register E* is speeded up by hot list.
We set 10 hot lists for each register and two
groups.

Table 6, 7, 8 and 9 are result of applying hot lists for four
types of SMEG generation. We make 10 hot list (list(hot))
accorging to eight registers and two groups {eax, ecx, ebx,
edx} and {edi, esi, ebi, ebp}. Among 8 hot lists (eax,
ecx, ebx,edx, edi, esi, ebi, ebp), which hot list increase
performance best depends on types of generated code. As
a whole, hot list group of calculation registers {eax, ecx,
ebx, edx} results in good performance compared with group
{edi, esi, ebi, ebp}. In some bad cases hot list of group II in-
crease the number generated clauses compared with no hot

Type B (no weighting) Type B (with weighting)
HOT LIST all clauses HOT LIST all clauses
no heat 1592 no heat 769
EAX 915 EAX 605
EBX 1561 EBX 494
ECX 497 ECX 490
EDX 519 EDX 593
EDI 1921 EDI 1164
ESI 1724 ESI 843
EBI 1724 EBI 685
EBP 1724 EBP 685
Group I 463 Group I 242
Group II 2422 Group II 1807

Table 7. Hot list strategies for Type B.

list.
Let T(group I) be computing time with hot list group

I. Let T(no weight) and T(group II) computing time with
no heat and hot list group II. In experiment, our system
achieves condition.

T(group I) < T(no weight) < T(group II)
or
T(group I) < T(group II) < T(no weight)

Particularly in type A and D, our system achieves this con-
dition.

T(group I) *3 < T(no weight)
where T(group II) < T(no weight)

6



generated code type A (mov for payload transfer) generated code type C (xchg for payload transfer)
MOV BRANCH OTHER generated clauses MOV BRANCH OTHER generated clauses
+ + - 1836 + + - 1908
+ - - 1091912 + - - 617600
- + - 2239 - + - 2538
- - + 1135508 - - + 630
- + + 780 - + + 604
+ - + 1135395 + - + 586
generated code type B (using indirect addressing) generated code type D (stack for payload transfer)

MOV BRANCH OTHER generated clauses MOV BRANCH OTHER generated clauses
+ + - 2138 + + - 2481
+ - - 402426 + - - 1172842
- + - 4620 - + - 2906
- - + 788 - - + 1673800
- + + 769 - + + 779
+ - + 780 + - + 1673691

Table 5. Weighting strategies. + means that detection program focus on the instruction. - means not.
Weighting (-,+,+) works well.

Type C (no weighting) Type C (with weighting)
HOT LIST all clauses HOT LIST all clauses
no heat 976 no heat 604
EAX 1018 EAX 605
EBX 720 EBX 494
ECX 946 ECX 490
EDX 976 EDX 593
EDI 1592 EDI 1164
ESI 1272 ESI 843
EBI 1114 EBI 685
EBP 1114 EBP 685
Group I 738 Group I 463
Group II 2284 Group II 1807

Table 8. Hot list strategies for Type C.

or
T(group I) *3 < T(group II)
where T(no weight) < T(group II)

We can conclude that proposed parallel analysis model is
effective. Particularly in type A and D, it is shown that we
can make deduction system faster without appending hard-
ware computing resources. c

8 Conclusion

As malicious code has become more sophisticated and
pervasive, faster and more effective system for forensics and
prevention is required. Software encryption and obfuscation

Type D (no weighting) Type D (with weighting)
HOT LIST all clauses HOT LIST all clauses
no heat 1877 no heat 801
EAX 1444 EAX 587
EBX 1675 EBX 587
ECX 870 ECX 599
EDX 1877 EDX 737
EDI 7406 EDI 1462
ESI 2028 ESI 876
EBI 2028 EBI 876
EBP 2028 EBP 876
Group I 563 Group I 259
Group II 8186 Group II 1891

Table 9. Hot list strategies for Type D.

is applied for geratate new malicious code of which signa-
ture is unknown (polymorphic). Quick analysis of poly-
morphic (partly encrypted) viral code is on demand. In this
paper we propose the parallel analysis of polymorphic vi-
ral code using automated deduction system. In proposed
system, decipher routine and its parameters are detected by
parallelized automated theorem proving. Decipher instruc-
tions are detected by resolution. Parameters are detected by
paramodulation and demodulation. We apply the weight-
ing and look-ahead heuristics (hot list strategy) for paral-
lel analysis. On parallel analysis system, several programs
with different strategies for the target code. When the fastest
detection process is finished with computing time T(0), re-
maining detection processes with T(1..n) can be terminated
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in T(0). In experiment, computing time for detection is re-
duced with average about 46%. In about a half of all cases,
T (0) ∗ 3 ≤ T(max) where T(max) is the longest comput-
ing time without our strategy. In these cases, our parallel
system makes detection program faster without appending
computing hardware resources.
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